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principle, we do not, of course, imagine that it is the only learning principle.
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scheme. We certainly imagine that other kinds of learning mechanisms will be
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can discover features important in the description of the stimulus
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Feature Discmvery by Compedtilve Learning

This paper reports the results of our studies with an unsupervised learning paradigm which we

have called *Competitive Learning.' We have examined competitive learning using both computer simu-

lation and formal analysis and have found that when it is applied to parallel networks of neuron-like
elements, many potentially useful learning tasks can be accomplished. We were attracted to competi-

tive learning because it seems to provide a way to discover the salient, general features which can be
used to classify a set of patterns. The basic components of the competitive learning scheme are:

(1) Start with a set of units that arm all the same except for some randomly distributed parame-

ter which makes each of them respond slightly differently to a set of input patterns.

(2) Limit the 'strength' of each unit.

(3) Allow the units to compete in some way for the right to respond to a given subset of
inputs.

The net result of correctly applying these three components to a learning paradigm is that individual
units learn to specialize on sets of similar patterns and thus become 'feature detectors" or 'pattern

classifiers." In addition to Frank Rosenblatt, whose work will be discussed below, svral others have
exploited competitive learning in one form or another over the years. These include Christoph von der

Malsburg (1973). Stephen Grosberg (1976), Kunihiko Fukusbima (1976), and Tuevo Kohonen (1962).
Our analyses differ from many of these in that we focus on the development of feature detectors rather
than pattern classification. We address these issues further below.

One of the central issues in the study of the processing capacities of neuron-like elements con-

cerns the limitations inherent in a one-level system and the difficulty of developing learning schemes
for multi-layered systems. Competitive learning is a scheme in which important features can be
discovered at one level that a multi-layer system can use to classify pattern scts which cannot be
classified with a single level systcm.

Thirty-five years of experience have shown that getting neuron-like elements to learn some easy
things is often quite straightforward, but desiping systems with powerful general learning properties is
a difficult problem, and the competitive learning paradigm does not change this fact. What we hope

to show is that competitive learning is a powerful strategy which, when used in a variety of situations,
greatly expedites some difficult tasks. Since the competitive learning paradigm has roots which go back
to the very beginniip of the study of artificial learning devices, it seems reasonable to put the whole

issue into historical perspective. This is even more to the point, since one of the first simple learning 0

devices, the perceptron, caused a peat furor and debate, the reverberations of which ae still with us.

In the begnning, thirty-five or forty years ago, it was very hard to see how anything resembling a
neural network could learn at all, so any example of learning was immensely interesting. Lemaing was

elevated to a status of p eat importance in those days because it was somehow uniquely sociated with
the properties of animal brains. After McCulloch and Pitts (1943) showed how neural-like networks

or
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could compute, the main problem then facing workers in this area was to understand how such net-
works could learn.

The first set of ideas that really got the enterprise going were contained in Donald Hebb's Organi-
zation of Behavior (1949). Before Hebb's work, it was believed that some physical change must occur in

a network to support learning, but it was not clear what this change could be. Hebb proposed that a

reasonable and biologically plausible change would be to strengthen the connections between elements
of the network only when both the pre- and post-synaptic units were active simultaneously. The
essence of Hebb's ideas still persist today in many learning paradigms. The details of the rules for
changing weight may be different, but the essential notion that the strength of connections between

the units must change in response to some function of the correlated activity of the connected units
still dominates learning models.

Hebb's ideas remained untested speculations about the nervous system until it became possible to
build some form of simulated network to test learning theories. Probably the first such attempt
occurred in 1951 when Dean Edmonds and Marvin Minsky built their learning machine. The flavor of
this machine and the milieu in which it operated is captured in Minsky's own words which appeared in

a wonderful New Yorker profile of him by Jeremy Bernstein (1981):

In the summer of 1951 Dean Edmonds and I went up to Harvard and built our machine. It
had three hundred tubes and a lot of motors. It needed some automatic electric clutches,

which we machined ourselves. The memory of the machine was stored in the positions of
its control knobs, 40 of them, and when the machine was learning, it used the clutches to
adjust its own knobs. We used a surplus gyropilot from a B24 bomber to move the clutches.

(p. 69 )

This machine actually worked and was so fascinating to watch that Minsky remembers:

We sort of quit science for awhile to watch the machine. We were amazed that it could

have several activities going on at once in this little nervous system. Because of the random
wiring it had a sort of fail safe characteristic. If one of the neurons wasn't working, it
wouldn't make much difference and with nearly three hundred tuba, and the thousands of

connections we had soldered there would usually be something wrong somewhere. . .. I
don't think we ever debugged our machine completely, but that didn't matter. By having
this crazy random design it was almost sure to work no matter how you built it. (p. 69)

In fact the functioning of this machine apparently stimulated Minsky sufficiently to write his PhD
thesis on a problem related to learning (Minsky, 1954). The whole idea must have generated rather wide

interest; von Neumann for example, was on Minsky's PhD committee and gave him encouragement.

Although Minsky was perhaps the first on the scene with a learning machine, the real beginninp of
meaningful neuron-like network learning can probably be traced to the work of Frank Rosenblatt. a
Bronx High School of Science classmate of Minsky's. Rosenblatt invented a clas of simple neuron-like

learning networks which he called perceptrons. In his book, Principles F Neurodynaics (1952). Rosen-
blatt brought together all of his results on perceptrons. In that book he gives a particularly clear
description of what he thought he was doing:
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Perceptrons are not intended to serve a detailed copies of any actual nervous system.
They're simplified networks, designed to permit the study of lawful relationships between
the organization of a nerve net, the organization of its environment, and the "psychological"
performances of which it is capable. Perceptrons might actually correspond to parts of
more extended networks mad biological systems; in this case, the results obtained will be
directly applicable. More likely they represent extreme simplifications of the central nervous
system, in which some properties are exaggerated and others suppressed. In this case, suc.
cesive perturbations and refinements of the system may yield a closer approximation.

The main strength of this approach is that it permits meaningful questions to be asked and
answered about particular types of organizations, hypothetical memory mechanisms, and
neural models. When exact analytical answers are unobtainable, experimental methods,
either with digital simulation or hardware models, are employed. The model is not the ter-
minal result, but a starting point for exploratory analysis of its behavior. (p. 28)

Rosenblatt pioneered two techniques of fundamental importance to the study of learning in neural-like
networks: digital computer simulation, and formal mathematical analysis, although he was not the first
to simulate neural networks that could learn on digital computers (cf. Farley & Clark, 1954).

Since the paradigm of competitive learning uses concepts which appear in the work of Rosen-
blatt, it is worthwhile reviewing some of his ideas in this area. His most influential result was the 'per-
ceptron learning theorem' which boldly asserts:

Given an elementary a - perceptron, a stimulus world W, and any classification C(W) for
which a solution exists; let all stimuli in W occur in any sequence, provided that each
stimulus must re-occur in finite time; then beginning from an arbitrary initial state, an error
correction procedure will always yield a solution to C(W) in finite time.... (p. 596)

As it turned out, the real problems arose out of the phrase 'for which a solution eits'-mote about
this later.

Less widely known is Rosenblatt's work on what he called 'spontaneous learning.' All network
learning models require rules, which tell how to present the stimuli and change the values of the
weights in accordance with the response of the model. These rules can be characterized as forming a
spectrum, at one end of which is learning with an error-correcting teacher, and at the other is com-
pletely spontaneous, unsupervised discovery. In between is a continuum of rules which depend on
manipulating the content of the input stimulus stream to bring about learning. These intermediate
rules are often rcferred to as "forced learning.' Here we are concerned primarily with attempts to
design a perceptron that would discover something interesting without a teacher because this is similar
to what happens in the competitive learning case. In fact, Rosenblatt was able to build a perceptron
L::9 was able to spontaneously dichotomize a random sequence of input patterns into classes such that
the members of a single clam were similar to each other, and different from the members of the other
clam. Rosenblatt realized that any randomly initialized perceptron would have to dichotomize an arbi-
trasry input pattern stream into a '1-set' consisting of those patterns that happened to produce a
response of 1, and a '-set' consisting of those that produced a response of 0. Of course one of these
sets could be empty by chance and neither would be of much interest in general. He reasoned that if a
perceptron could reinforce these sets by an appropriate rule based only on the perccptron's spontane-
ous response and not on a teacher's error correction, it might eventually end up with a
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dichotomization in which the members of each set were more like each other than like the members of
the opposite set. What was the appropriate rule to use to achieve the desired dicotomization? Thc
first rule he tried for these perceptrons, which he called C type, was to increment weights on lines
active with patterns in the 1-set, and decrement weights on lines active with patterns in the 0-set. The
idca was to force a dichotomization into sets whose members were similar in the sense that they
activated overlapping subsets of lines. The results were disastrous. Sooner or later all the input pat-
terns were classified in one set. There was no dichotomy but there was stability. Once one of the seats
won, it remained the victor forever.

Not to be daunted, he examined why this undesirable result occurred and realized that the prob-
lem lay in the fact that since the weights could grow without limit, the set that initially had a majority
of the patterns would receive the majority of the reinforcement. This meant that weights on lines
which could be activated by patterns in both sets would grow to infinite magnitudes in favor of the
majority set, which in turn would lead to the capture of minority patterns by the majority set, and ulti-
mate total victory for the majority. Even where there was initial equality between the sets, inevitable
fluctuations in the random presentation of patterns would create a majority set that would then go on
to win. Rosenblatt overcame this problem by introducing mechanimis to limit weight growth in such a
way that the set that was to be positively reinforced at active lines would compensate the other set by
giving up some weight from all its lines. He called the modified perceptrons C'. An example of a C'
rule is to lower the magnitude of all weights by a fixed fraction of their current value before specifically
incrementing the magnitude of some of the weights on the basis of the response to an input pattern.
This type of rule had the desired result of making an equal dichotomy of patterns a stable rather than
an unstable state. Patterns in each of the sets were similar to each other in the sense that they
depended on similar sets of input lines to produce a response. In Rosenblatt's initial experiment, the
main feature of similarity was not so much the shape of the patterns involved, but their location on
the retina. That is, his system was able to spontaneously learn something about the geometry of its
input line arrangement. Later, we will exmine this important property of spontaneous geometry learn-
ing in considerable detail. Depending on the desired learning task, it can be either a boon or a nui-
sance.

Rosenblatt was extremely enthusiastic about his spontaneous learning results. In fact, his
response can be described as sheer ecstasy. To see what he thought about his achievements, consider
his claim (Rosenblatt, 1962):

It seems clear that the class C' perceptron introduces a new kind of information processing
automaton: For the first time, we have a machine which is capable of having original ideas.
As an analogue of the biological brain, the perceptron, more precisely, the theory of statisti-
cal separability, seems to come closer to meeting the requirements of a functional explana-
tion of the nervous system than any system previously proposed.

Although Rosenblatt's results were both interesting and Sigificant, the claims implied in the above
quote struck his contemporaries as unfounded. What was also significant was that Rosenblatt
appeared to be saying that the type of spontaneous learning he had demonstrated was a property of
perceptrons, which could not be replicated by ordinary computes. Consider the following quote from
the same source:
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As a concept, it would seem that the perceptron has established, beyond doubt, the feasibil-
ity and principle of non-human systems which may embody human cognitive functions at a
level far beyond that which can be achieved through present day automatons. The future of
information processing devices which operate on statistical, rather then logical principles
seems to be clearly indicated.

It is this notion of Rosenblatt's--that perceptrons are in some way superior to computers--that
ignited a debate in artificial intelligence that had significant effects on the development of neural-like
network models for both learning and other cognitive processes. Elements of the debate are still with
us today in arguments about what the brain can do that computers can't do. There is no doubt that
this was an important issue in Rosenblatt's mind, and almost certainly contributed to the acrimonious
debate at that time. Consider the following statement by Rosenblatt made at the important confer-
ence on Mechanization of Thought Processes back in 1959.

Computers seem to share two main functions with the brain: (a) Decision making, based on
logical rule, and (b) control, again based on logical rules. The human brain performs these
functions, together with a third: interpretation of the environment. Why do we hold
interpretation of the environment to be so important? The answer, I think, is to be found
in the laws of thermodynamics. A system with a completely self contained logic can never
spontaneously improve its ability to organize, and to draw valid conclusions from informa-
tion.

Clearly in some sense, Rosenblatt wu saying that there were things that the brain and perceptrons,
because of their statistical properties, could do which computers could not do. Now this may seem
strange since Rosenblatt knew that a computer program could be written which would simulate the
behavior of statistical perceptrons to any arbitrary degree of accuracy. Indeed, he was one of the
pioneers in the application of digital simulation to this type of problem. What he was actually refer-
ring to is made clear when we examine the comments of other participants at the conference, such as
Minsky and McCarthy, who were using the symbol manipulating capabilities of the computer to
directly simulate the logical processes involved in decision making, theorem proving, and other intellec-
tual activities of this sort. Rosenblatt believed the computer used in this way would be inadequate to
mimic the brain's true intellectual powers. This task, he thought, could only be accomplished if the
computer or other electronic devices were used to simulate perceptrons. We can summarize these
divergent points of view by saying that Rosenblatt was concerned not only with what the brain did,
but with how it did it, whereas others, such as Minsky and McCarthy, were concerned with simulating
what the brain did, and didn't really care how it was done. The subsequent history of Al has shown

both the successes and failures of the standard AI approach. We still have the problems today, and it's
still not clear to what degree computational strategies similar to the ones used by the brain must be
employed in order to simulate its performance.

In addition to producing fertilizer, as all debates do, this one also stimulated the growth of some
new results on perceptrons, some of whic came from Minsky. Rosenblatt had shown that a two layer
petceptron could carry out any of the 2' possible classifications of N binary inputs; that is, a solu-
tion to the classification problem had always existed in principle. This result was of no practical value
howevr, because 2 N units were required to accomplish the task in the completely general case.
Rosenblatt's approach to this problem was to use a much smaller number of units in the first layer
with each unit connected to a small subset of the N inputs at random. His hope was that this would
give the perceptron a high probability of learning to carry out classifications of interest. Experiments
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and formal analysis showed that these random devices could learn to recognize patterns to a significant

degree but that they had severe limitations. Rosenblatt (1962) characterized his random perceptron as
follows:

It does not generalize well to similar forms occurring in new positions in the retinal field,
and its performance in detection experiments, where a familiar figure appears against an
unfamiliar background, is apt to be weak. More sophisticated psychological capabilities.
which depend on the recognition of topological properties of the stimulus field, or on
abstract relations between the components of a complex image, arm lacking.

Minsky and Papert worked through most of the Sixties on a mathematical analysis of the computing
powers of perceptrons with the goal of understanding these limitations. The rcsults of their work are
available in a book called Perceptrow (Minsky & Papert, 1969). The central theme of this work is that
parallel recognizing elements, such u perceptrons are beset by the same problems of scale as serial pat-

tern recognizers. Combinatorial explosion catches you sooner or later, although sometimes in different
ways in parallel than in serial. Minsky and Papert's book had a very dampening effect on the study of

neuron-like networks a computational devices. Minsky has recently come to reconsider this negative
effect (Bernstein, 1981):

I now believe the book was overkill.... So after being irritated with Rosenblatt for over-
claiming and diverting all those people along a false path, I started to realize that for what

you get out of it- the kind of recognition it can do-it is such a simple machine that it

would be astonishing if nature did not make use of it somewhere. (p.103 )

Perhaps the real lesson from all this is that it really is worthwhile trying to put things in perspective.

Once the problem of scale has been understood, networks of neuron-like elements arc often very

useful in practical problem'i of recognition and classification. These networks are somewhat analogous
to computers, in that they won't do much unless programmed by a clever person; networks, of course,
are not so much programmed as designed. The problem of finding networks of practical size to solve a

particular problem is challenging because relatively small changes in network design can have very large

effects on the scale of a problem. Consider networks of neuron-like units that determine the parity of
their N binary inputs (see Figure 1). In the simple perceptrons studied by Minsky and Papert, units in

the first layer output I only if all their inputs arc I and output 0. This takes 2 N units in the first layer,

and a single linear threshold unit with a fan-in of 2N in the second layer, to determine parity. If the
units in the first layer are changed to linear threshold elements, then only N of them arc required, but

all must have a fan-in of N. If we allow a multilayer network to do the job, then about 3N units are
needed, but none needs a fan-in of more than 2. The number of layers is of order log2N. The impor-

tance of all this to the competitive learning paradigm, or any other for that matter, is that no network

can learn what it is not capable of doing in principle. What any particular network can do is depen-

dent on its structure and the computational properties of its component elements. Unfortunately

there is no canonical way to find the best network or to determine what it will learn, so the whole

enterprise still has much of the flavor of an experimental science.
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Figure 1. (A) Parity network from Minsky and Papert (1969). Each 40 unit has an output of 1
only if all of its inputs are 1. I is a linear threshold unit with threshold of 0, i.e., like all the other
linear threshold units in the figure, it fires only when the sum of its weighted inputs is greater than the
threshold. This and all the other networks signal odd parity with a I in the rightmost unit of the net-
work. (B) Parity network made from 2 layers of linear threshold units. (C) Threa unit network for
determining the parity of a pair of inputs. (D) Two layer network using the subnetwork described in
C. In general, the number of P-units is of order N and the number of layers is of order logZN.
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The Competitive Learning Mechanism

Paradigms of Learning

It is possible to classify learning mechanisms in several ways. One useful classification is in terms
of the learning paradigm in which the model is supposed to work. There arc at ea-st four common
learning paradigms in neural-like processing systems:

(1) Auto Associator. In this paradigm a set of patterns are repeatedly presented and the system
is supposed to "store the patterns. Then, later, parts of one of the original patterns or pos-
sibly a pattern similar to one of the original patterns is presented, and the task is to
.retrieve' the original pattern through a kind of pattern completion procedure. This is an
auto-association proce in which a pattern is associated with itself so that a degraded ver-
sion of the original pattern can act as a retrieval cue.

(2) Pattern Associator. This paradigm is really a variant on the auto association paradigm. A set

of pairs of patterns arc repeatedly presented. The system is to learn that when one member
of the pair is presented it is supposed to produce the other. In this paradigm one seeks a
mechanism in which an essentially arbitrary set of input patterns can be paired with an arbi-
trary set of output patterns.

(3) Classification Paradigm. The classification paradigm also can be considered as a variant on
the previous learning paradigms, although the goals are sufficiently different and it is
sufficiently common that it deserves separate mention. In this case, there are a fixed set of
categories into which the stimulus patterns are to be classified. There is a training session in
which the system is presented with the stimulus patterns along with the categories to which
each stimulus belongs. The goal is to learn to correctly classify the stimuli so that in the
future when a particular stimulus or a slightly distorted version of one of the stimuli is
presented the system will classify it properly. This is the typical paradigm in which the per-
ceptron is designed to operate and in which the perceptron convergence theorem is proved.

(4) Regularity Detector. In this paradigm there is a population of stimulus patterns and each
stimulus pattern, Sk, is presented with some probability PR. The system is supposed to dis-
cover statistically salient features of the input population. Unlike the classification paradigm,
there is r.- a priori set of categories into which the patterns are to be classified: rather, the
system must develop its own featural representation of the input stimuli which captures the
most salient features of the population of input patterns.

Competitive learning is a mechanism well-suited for regularity detection, as in the environment
described in (4).

Competitive Learning

The architecture of a competitive learning system (illustrated in Figure 2) is a common one. It
consists of a set of hierarchically layered units in which each layer connects, via excitatory connections,
with the layer immediately above it. In the most general case, each unit of a layer receives an input
from each unit of the layer immediately below and projects to each unit in the layer immediately above
it. Moreover, within a layer, the units are broken into a set of inhibitory clusters in which all elements
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LAYER 3 00
Inhibitory Clusters 00

Excitatory
Connections

LAYER 2 \0 0
Inhibitory Clusters 000
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0 0000LAYERI 1 o°O oO 0

InputUnIts 000 0 00 0 .0
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INPUT PATTERN

Figure 2. The architecture of the competitive learning mechanism. Competitive learning takes
place in a context of sets of hierarchically layered units. Units are represented in the diagram as dots.
Units may be active or inactive. Active units are represented by filled dots, inactive ones by open dots.
In general, a unit in a given layer can receive inputs from all of the units in the next lower layer and
can project outputs to all of the units in the next higher layer. Connections between layers are excita-
tory and connections within layers are inhibitory. Each layer consists of a set of clusters of mutually
inhibitory units. The units within a cluster inhibit one another in such a way that only one unit per
cluster may be active. We think of the configuration of active units on any given layer a representing
the input pattern for the next higher level. There can be an arbitrary number of such layers. A given
cluster contains a fied number of units, but different clusters can have different numbers of units.
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within a cluster inhibit all other elements in the clustr. Thus the elements within a cluster at one
level compete with one another to respond to tic pattern appeatring on the layer below. The more
strongly any particular unit responds to an incoming stimulus, the more it shuts down the other
members of its cluster.

There are many variations on the competitive learning theme. A number of researchers have
developed variants of competitive learning mechanisms and a number of results already erist in the
literature. We have already mentioned the pioneering work of Rosenblatt. In addition, vn der
Malsburg (1973). Fukushima (1975), and Grossberg (16), among others, have deve!oped models which
are competitive learning models, or which have many propties in common with competitive learning.
We believe that the essential properties of the competitive tearning mechanism are quite general. How-
ever, for the sake of concreteness, in this paper we have chosen to study, in some detail, the simplest
of the systems which seem to be representative of the essential characteristics of competitive learning.
Thus, the system we have analyzed has much in common with the previous work, but wherever possible
we have simplified our assumptions. The system that we have studied most is described below:

(1) The units in a given layer are broken into a set of non-overlapping clusters. Each unit
within a cluster inhibits every other unit within a cluster. The clusters are winner-take-all,
such that the unit receiving the largest input achieves its maximum value while all other
units in the cluster are pushed to their minimum value. 1 We have arbitrarily set the max-
imum value to 1 and the minimum value to 0.

(2) Every element in every cluster receives inputs from the same lines.

(3) A unit learns if and only if it wins the competition with other units in its cluster.

(4) A stimulus pattern Sj consists of a binary pattern in which each element of the pattern is
either active or inactive. An active element is assigned the value 1 and an inactive element is
assigned the value 0.

(5) Each unit has a fixed amount of weight (all weights are positive) which is distributed among
its input lines. The weight on the line connecting unit I on the lower (or input) layer to
unit j on the upper layer, is designated wij. The fixed total amount of weight for unit J is
designated XWij 1. A unit learns by shifting weight from its inactive to its active input

lines. If a unit does not respond to a particular pattern no learning takes place in that unit.
If a unit wins the competition, then each of its input lines give up some proportion a of its
weight and that weight is then distributed equally among the active input lines. 2 More for-
mally, the learning rule we have studied is:

1. A simple circuit for achieving this result is attained by having each unit activate Itself and Inhibit its neighbon. Orossberg
(1976) mploys Just mch a network to oai, the maximum value of a at of units.

2. This lerning rule w*- proposed by von der Malsburg (1973). As Oombetg (1976) points out, tnotmalization of the
waillats is not necessary. The same result can be obtained by normailzing the Input patterns and then asuming that the
weights approach the value on the input line. Normalawan weights is simpler to implement than normalizing patterns. so we
chos that option. For most of our experiments, however, it does not matter which of these two riles we chose sice all pat.

terns were of the same magnitude.
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0 if unit J loses on stimulus k
Aij -= c. if unit J wins on stimulus k

where Ctk is equal to I if in stimulus pattern Sk unit I in the lower layer is active and zero
otherwise, and ni, is the number of active units in pattern Sk (thus nk = ICAk).

Figure 3 illustrates a useful geometric analogy to this system. We can consider each stimulus pat-
tern as a vector. If all patterns contain the same number of active lines, then all vectors are the same
length and each can be viewed as a point on an N dimensional hypersphere, where N is the number of
units in the lower level, and therefore, also the number of input lines received by each unit in the
upper level. Each z in Figure 3a represents a particular pattern. Those patterns which are very similar
are near one another on the sphere, those which are very different will be far from one another on the
sphere. Now note that since there are N input lines to each unit in the upper layer, its weights can
also be considered a vector in N dimensional space. Since all units have the same total quantity of
weight, we have N dimensional vectors of approximately fixed length for each unit in the cluster. 3

Thus, properly scaled, the weights themselves form a set of vectors which (approximately) fall on the
surface of the same hypersphere. In Figure 3b, the o's represent the weights of two units superimposed
on the same sphere with the stimulus patterns. Now, whenever a stimulus pattern is presented, the
unit which responds most strongly is simply the one whose weight vector is nearest that for the
stimulus. The learning rule specifies that whenever a unit wins a competition for a stimulus pattern, it
moves a percentage X of the way from its current location toward the location of the stimulus pattern
on the hypersphere. Now, suppose that the input patterns fell into some number, M, 'natural' group-
ings. Further, suppose that an inhibitory cluster receiving inputs from these stimuli contained exactly
M units (as in Figure 3c). After sufficient training, and assuming that the stimulus groupings are
sufficiently distinct, we expect to find one of the vectors for the M units placed roughly in the center
of each of the stimulus groupings. In this case, the units have come to detect the grouping to which
the input patterns belong. In this sense, they have 'discovered' the structure of the input pattern sets.

Some Features of Competitive Learning

There are several characteristics of a competitive learning mechanism which make it an interesting
candidate for further study, for example:

(1) Each cluster classifies the stimulus set into M groups, one for each unit in the cluster. Each
of the units captures roughly an equal number of stimulus patterns. It is possible to con-
sider a cluster as forming an M-ary feature in which every stimulus pattern is classified as
having exactly one of the M possible values of this feature. Thus, a cluster containing 2
units acts as a binary feature detector. One element of the cluster responds when a particu-
lar feature is present in the stimulus pattern, otherwise the other element responds.

3. It should be noted that this emetric interpretation is only appmximata. We hIsm used the conatnant that Y ij = 1

father than the contraint that (a = 1. Tis latter coom rint would ensure that ell vectors are in fact the sase length.

Our asumption only amures that they wil be approximately the same length.
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a. b

C.

Figure 3. A geometric interpretation of competitive lemning. (a) It is useful to conceptualize

stimulus patterns as vectors whose tips all lie on the surface of a hypersphere. We can then directly see

the similarity among stimulus patterns m distance between the points on the sphere. In the figure, a

stimulus pattern is represented as an a. le figure represents a population of eight stimulus patterns.

There are two clusters of three patterns and two stimulus patterns which am rather distinct from the

others. (b) It is also useful to represent the weights of units a vectors falling on the surface of the

same hypersphere. Weight vectors are represeted in the fgure a o's. The figure illustrates the weights

of two units falling on rather different parts of the sphere. The response rule of this model is

equivalent to the rule that whenever a stimulus pattern is presented, the unit whose weight vector is

closest to that stimulus pattern on the sphere wins the competition. In the figure, one unit would

respond to the cluster in the northern hemisphere and the other unit would respond to the rest of the

stimulus patterns. (c) The learning rule of this model is roughly equivalent to the rule that whenever

a unit wins the competition (i.e., is closest to the stimulus pattern), that weight vector is moved

toward the presented stimulus. The figure shows a case in which there ae three units in the cluster

and three natural groupings of the stimulus patterns. In this case, the weight vectors for the three

units will each migrate toward one of the stimulus groups.
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(2) If there is strcture in the stimulus patterns, the units will break up the patterns along struc-

turally relevant lines. Roughly speaking, this means that the system will find clusters if they

are there. (A key problem, which we address below, is specifying the nare of the structure

that this system discovers.)

(3) If the stimuli am highly structured the classifications are highly stable. If the stimuli are less

well-structured, the classifications arm more variable, and a given stimulus pattern will be

responded to first by one and then by another member of the cluster. In our experiments,

we started the weight vectors in random directions and presented the stimuli randomly. In

this case, there is rapid movement as the system reaches a relatively stable configuration

(such as one with a unit roughly in the center of each cluster of stimulus patterns). These

configurations can be more or less stable. For cmple, it the stimulus points don't actually

fall into nice clusters, then the configurations will be relatively unstable and the presenta-

tion of each stimulus will modify the pattern of responding so that the system will undergo

continual evolution. On the other hand, if the stimulus patterns fall rather nicely into clus-

ters, then the system will become very stable in the sense that the same units will always

respond to the same stimuli. '

(4) The particular grouping done by a particular cluster depends on the starting value of the
weights and the sequence of stimulus patterns actually presented. A large number of clus-

ters, each receiving inputs from the same input lines can, in general, classify the inputs into

a large number of different groupings, or alternatively, discover a variety of independent
features present in the stimulus population. This can provide a kind of coarse coding of
the stimulus patterns. 5

Formal Analysis

Perhaps the simplest mathematical analysis that can be given of the competitive learning model
under discussion involves the determination of the sets of equillbrlaen staes of the system-that is,

states in which the average inflow of weight to a particular line is equal to the average outflow of
weight on that line. Let pk be the probability that stimulus Sk is presented on any trial. Let vik be

the probability that unit J wins when stimulus Sk is presented. Now we want to consider the case in

which =Aj = 0, that is, the case in which the average change in the weights is zero. We refer

j
to such states as equilibriwn stares. Thus, using the learning rule and averaging over stimulus patterns
we can write

4. 0Omberg (1976) ha addresed this problem in his very smilar system. He h proved that if the patterm ae suafficiently
pss, and/or whe there w enouglh unioe in the cluster, then a system mcb a this wiU lAnd a pafectly sable dmliocatioo.

He also points out tha when these conditions don't hold. the clamil6cation can be unstable. Most of our work is with casm in
which there is ow perfectly stable cluelcalfioo and the number of patterns is umu larger than the number of units in the inhi-
bitory dusters.

S. T ieres a problem in that ott can't aure that the different clusters will discover different feature. A alight modification
of the "am in which clusters repd ° one another can insure chat different dusters find different feature. We shail not pr.
me that further in ibis paper.

7 _* . _- __ _---- ._ ' _.- _ -- ._ .
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0 j P vk -__ vZij A Vjk

which implies that at equilibrium

k k nk

and thus

k nk

k
There are a number of important observations to note about this equation. First, note that £P Vlk

k
is simply the probability that unit It wins averaged over all stimulus patterns. Note f rthr thai

Pck vjk

C~kA Vjk is the probability that input line I is active and unit j wins. Thus, the ratio -
k Pt .jkkis the conditional probability that line I is active given unit j wins, p (linej - I I unitj wins). Thus,

if all patterns are of the same size, i.e., nk - n for all k, then the weight wj becomes proportional to

the probability that line I is active given unit J wins. That is,
wij - ntp(linei  1unitj wins).

We are now in a position to specify the response, at equilibrium, of unit J when stimulus S1 is

presented. Let tjl be the input to unit J in the face of stimulus S1. This is simply the sum of weights

on the active input lines. This can be written

k

k
which implies that at equilibrium ru Vji

i

where rij represents the overlap between stimulus I and stimulus I, ri - _ck cnt. Thus, at equili-
k n

brium a unit responds most strongly to patterns that overlap other patterns to which the unit
responds, and responds most weakly to patterns that are far from patterns to which it responds.
Finally, it should be noted that there is another set of restrictions on the value of v-j -the probability
that stimulus unit J responds to stimulus S1. In fact, the competitive learning rule we have studied
has the further restriction that

Vi 1 - " ajk >  ik for all i 0 j
otherwise

Thus, in general, there am many solutions to the equilibrium equations described above. The competi-
tive learning mechanisms can only reach those equilibrium states in which the above-stated relation-
ships between the vjk and the ajk also hold.
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Whenever the system is in a state in which, on average, the weights are not changing, we say that

the system has reached an equillbriw state. In such a state the values of atjk become relatively stable,

and therefore, the values of vik become stable. When this happens, the system always responds the

same way to a particular stimulus pattern. However, it is possible that the weights will be pushed out

of equilibrium by an unfortunate sequence of stimuli. In this case, the system can move toward a new

equilibrium state (or possibly back to a previous one). Some equilibrium states are more stable than

others in the sense that the v~i become very unlikely to change values for long periods of time. In par-

ticular, this will happen whenever the largest ast is much larger than any other alk for all stimulus

patterns Sk. In this case, small movements in the weight vector of one of the units is very unlikely to

change which unit responds to which stimulus pattern. Such equilibrium states arc said to be highly
stable. We should expect, then, that after it has been learning for a period of time. the system will
spend most of its time in the most highly stable of the equilibrium states. One good measure of the

stability of an equilibrium state is given by the average amount by which the inptst to the winning units

is greater than the response of all of the other units averaged over all patterns and all units in a cluster.
This measure is given by T below.

T ' wPk Vik (cujk - Mik)

The larger the value of T, the more stable the system can be expected to be, and the more time we can

expect the system to spend in that state. Roughly, if we assume that the system moves into states which
maximize T. we can show that this amounts to maximizing the overlap among patterns within a group
while minimizing the overlap among patterns between groups. In the geometric analogy above, this
will occur when the weight vectors point toward maximally compact stimulus regions which are as dis-

tant as possible from other such regions.

Some Experimental Results

Dipole Experiments

The essential structure that a competitive learning mechanism can discover is represented in the
overlap of stimulus patterns. The simplest stimulus population in which stimulus patterns can overlap
with one another is one constructed out of dipoles -stimulus patterns consisting of exactly two active

elements and the rest inactive. If we have a total of N input units there are N possible dipole

stimuli. Of course, if the actual stimulus population consists of all .-... possibilities, there is
2

no structure to be discovered. There are no clusters for our units to point at (unless we have one unit
for each of the possible stimuli, in which case we can point a weight vector at each of the possible

input stimuli). If, however, we restrict the possible dipole stimuli in certain ways, then there can be
meaningful groupings of the stimulus patterns that the system can find. Consider, as an example, a
case in which the stimulus lines could be thought of as forming a two dimensional grid in which the

only possible stimulus patterns were those which formed adjacent pairs in the grid. If we have an
N XM grid, there are N (M -1)+M(N -1) possible stimuli. Figure 4 shows one of the 24 possible
adjacent dipole patterns defined on a 4X4 grid. We carried out a number of experiments employing
stimulus sets of this kind. In most of these experiments we employed a two layer system with a single
inhibitory cluster of size two. Figure 5 illustrates the architecture of one of our experiments. The
results of three runs with this architecture are illustrated in Figure 6, which shows the relative values of
the weights for the two units. The values are shown laid out on a 4X4 grid so that weights are next to
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Figure 4. A dipole stimulus defined on a 4X4 matriz of input units. The tule for generating

such stimuli is simply that any two adjacent units may be simultaneously active. Non-adjacent units
may not be active and more than two units may not be simultaneously active. Active units am indicat-
ed by filled circles.
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Figure 5. The architecture of a competitive learning system with 16 input units and one cluster of
size two in the second layer.

Now" AVWC*.
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0O 400
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so40

Figure 6. Relative weight values for the two members of the inhibitory cluster. (a) The results for
one run with the dipole stimuli defined over a two dimensional grid. The left hand grid shows the rela-
tive values of the weights initially and the right hand grid shows the relative values of the weights after
400 trials. A filled circle means that unit 1 had the larger weight on the corresponding input. An
unfilled circle means that unit 2 had the larger weight. A heavy line connecting two circles means that
unit I responded to the stimulus pattern consisting of the activation of the two circles, and a light line
means that unit 2 won the corresponding pattern. In this case the system has divided the grid horizon-
tally. (b) The results for a second run under the same conditions. In this case the system has divided
the grid horizontally. (c) The results for a third run. In this cae the left hand grid represents the state
of the system after 50 trials. Here the Vgid was divided diagonally.
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one another if the units with which they connect are next to one another. The relative values of the
weights are indicated by the filling of the circles. If a circle is filled, that indicates that unit 1 had the
largcst weight on that line. If the circle is unfilled, that means that unit 2 had the largest weight on
that line. The grids on the left indicate the initial configurations of the weights. The grids on the

right indicate the final configurations of weights. The lines connecting the circles represent the possi-
ble stimuli. For example, the dipole stimulus pattern consisting of the upper left input line and the

one immediately to the right of it is represented by the line connecting the upper-left circle in the grid
with its right neighbor. The unit that wins when this stimulus is presented is indicated by the width
of the line connecting the two circles. The wide line indicates that unit I was the winner, the narrow
line indicates that unit 2 was the winner. It should be noted, therefore, that two unfilled circles must
always be joined by a narrow line and two filled circles must always be joined by a wide line. The rea-
son for this is that if a particular unit has more weight on both of the active lines then that unit mat
win the competition. The results clearly show that the weights move from a rather chaotic initial
arrangement to an arrangement in which essentially all of those on one side of the grid are filled and all
on the other side are unfilled. The border separating the two halves of the grid may be at any orienta-
tion, but most often, it is oriented vertically and horizontally, as shown in the upper two examples.
Only rarely is the orientation diagonal as in the example in the lower right hand grid. Thus, we have a
case in which each unit has chosen a coherent half of the grid to which they respond. It is important
to realize that as far u the competitive learning mechanism is concerned the sixteen input lines are
unordered. The two dimensional grid-like arrangement exists only in the statistics of the population of
stimulus patterns. Thus, the system has discovered the dimensional structure inherent in the stimulus
population and has devised binary feature detectors that tell which half of the grid contains the
stimulus pattern. Note, each unit responds to roughly half of the stimulus patterns. Note also that
while some units break the grid vertically, some break the grid horizoatAly, and some break it diago-
nally; a combination of several clusters offers a rather more precise classification of a stimulus pattern.

In other experiments, we tried clusters of other sizes. For example, Figure 7 shows the results for
a cluster of size four. It shows the initial configuration and its sequence of evolution after 100, 200,
400, 800, and after 4000 training trials. Again, initially the regions are chaotic. After training, however,
the system settles into a state in which stimuli in compact regions of the grid are responded to by the

same units. It can be seen, in this case, that the trend is toward a given unit responding to a maximally
compact group of stimuli. In this experiment, three of the units settled on compact square regions
while the remaining one settled on two non-connected stimulus regions. It can be shown that the state
into which the system settled does not quite maximize the value T, but does represent a relatively
stable equilibrium state.

In the examples discussed thus far, the system, to a first approximation, settled on a highly com-
pact representation of the input patterns in which all patterns in a region are captured by one of the
units. The grids discussed above have all been two-dimensional. There is no need to restrict the
analysis to a two-dimensional grid. In fact, a two unit cluster will, essentially, pass a plane through a
space of any dimensionality. There is a preference for planes perpendicular to the axes of the spaces.
Figure 8 shows a typical result for the system learning a three-dimensional space. In the case of three
dimensions, there are three equally good planes which can be passed through the space and, depending
on the starting directions of the weight vectors and on the sequence of stimuli, different clusters will
choose different ones of these planes. Thus, a system which receives input from a set of such clusters
will be given information as to which qmdrmv of the space the pattern appears in. It is important to
emphasize that the coherence of the space is enirely in the choice of input stimuli, nor in the architec-
ture of the competitive learning mechanism. The system disovers the spatial structure in the input

I
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Figure 7. The relative weights of each of the four elements of the cluster after 0, 100, 200. 400,
800, and 4000 stimulus presentations.
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Figure 8. The relative weights for a system in which the stimulus patterns were chosen from a
three dimensional grid after 4000 presentations.
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lines.

Formal analysis. For the dipole examples described above, it is possible to develop a rather pre-
cise characterization of the behavior of the competitive learning system. Recall that the most stable
equilibrium state (and therefore the one the system is most likely to end up in) is the one that maxim-
izes the function

T - Ypkvj& (-jk - ,,k).
k j.1

Now, in the dipole examples, all stimulus patterns of the stimulus population were equally likely (i.e.,1
Pk = _-), all stimulus patterns involve two active lines, and for every stimulus pattern in the popula-

tion of patterns there are a fixed number of other stimulus patterns in the population which overlap it.

6 This implies that I rkj = R for all J. With these assumptions, it is possible to show that maximiz-

k
ing T is equivalent to minimizing the function

M B

(see appendix for derivation), where Ni is the number of patterns on which unit I wins, M is the
number of units in the cluster, and Bi is the number of cases in which unit I responds to a particular

pattern and does not respond to a pattern which overlaps it. This is the number of border patterns to
which unit I responds. Formally, we have NM

B, = V r1J >0.

jk
From this analysis, it is clear that the most stable states are ones in which the size of the border is
minimized. Since, total border region is minimized when regions are spherical, we can conclude that in
a situation in which stimulus pairs are drawn from adjacent points in a high-dimensional hyperspace,
our competitive learning mechanism will form essentially spherical regions that partition the space into
one such spherical region for each element of the cluster.

Another result of our simulations which can be explained by these equations is the tendency for
each element of the cluster to capture roughly equally sized regions. This results from the intercon-
nectedness of the stimulus population. The result is easiest in the case in which M =2. In this case,
the function we want to minimize is given byB +81

N1  N 2 "

Now, in the case of M =2, we have B I=B 2, since the two regions must border on one another. More-
over, we have N I +N 2 =N, since every pattern is either responded to by unit 1 or unit 2. Thus, we
want to minimize the function

1 1
+N -NI

This function is minimized when N = -I Thus, there are two pressures which determine the per-
2

formance of the system in these cases:

6. Note that this latter condition does not quite hold for the example presented above due to edp effects. It is pomible to
eliminate edp effects by the use of a torus. We have cairled out experiments on toi a- well, mad the results are essentially the
Sam.
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(1) There is a pressure to reduce the number of border stimuli to a minimum.

(2) There is a pressure to divide the stimulus patterns among the units in a way that depends on
the total amount of weight that unit has. If two units have the same amount of weight.
they will capture roughly equal numbers of equally likely stimulus patterns.

Learning Words and Letters

It is common practice to handcraft networks to carry out particular tasks. Whenever one creates
such a network that performs a task rather successfully, the question arises a to how such a network
might have evolved. The word perception model developed in McClelland and Rumelhart (1981) and
Rumelhart and McClelland (1982) is one such case in point. That model often rather detailed accounts
of a variety of word perception experiments, but it was crafted to do its job. How could it have
evolved naturally? Could a competitive learning mechanism create such a network?

Let's begin with the fact that the word perception model required a set of position-specific letter
detectors. Suppoe that a competitive learning mechanism is faced with a set of words-to what
features would the system learn to respond? Would it create position-specific letter detectors or their
equivalent? We proceeded to answer this question by again viewing the lower level units as forming a
two-dimensional grid. Letters and words could then be presented by activating those units on the grid
corresponding to the points of a standard CRT font. Figure 9 gives examples of some of the stimuli
used in our experiments. The grid we used was a 7X14 grid. Each letter occurred in a 7X5 rectangu-
lar region on the grid. There was room for two letters with some space in between, as sho-:, i.. the
Figure. We then carried out a series of experiments in which we presented a set of word anr,!o letter
stimuli to the system allowing it to extract relevant features.

Before proceeding with a description of our experiments, it should be mentioned that these
experiments required a slight addition to the competitive learning mechanism. The problem was that,
unlike the dipole stimuli, the letter stimuli only sparsely covered the grid and many of the units in the
lower level never became active at all. Therefore, there was a possibility that, by chance, one of the
units would have most of its weight on input lines that were never active, whereas another unit may
have had most of its weight on lines common to all of the stimulus patterns. Since a unit never lcarns
unless it wins, it is possible that one of the units will never win, and therefore never learn. This, of
course, takes the competition out of competitive learning. This situation is analogous to the situation
in the geometric analogy in which all of the stimulus points are relatively close together on the hyper-
sphere, and one oi the weight vectors, by chance, points near the cluster while the other one points far
from the stimuli. (See Figure 10). It is clear that the more distant vector is not closest to any stimulus
and thus can never move toward the collection. We have investigated two modifications to the system
which deal with the problem. One, which we call the leaky learning model, modifies the learning rule
to state that both the winning md the losing units move toward the presented stimulus, the close vector
simply moves much further. In symbols this suggests that
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Figur 9. Example stimulus fr the wod and lettr experiments.
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Figure 10. A geomctric interpretation of changes in stimulus sensitivity. The larger the circle
around the head of the weight vector the more sensitive the unit. The decision as to which unit wins
is made on the basis of the distance from the circle rather than from the head of the weight vector. In
the example, the stimulus pattern indicated by the y is actually closer to the head of one vector o, but
since it is closer to the circle surrounding vector p, unit p would win the competition.
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C ik

at - g4,o if unit J loses on stimulus k

= a if unit J wins on stimulus k
Sw Sv -gw°ij
9WInk  a

where g, is the learning rate for the losing units, g, is the learning rate for the winning unit, and
where g, << g,. In our experiments we made g, an order of magnitude smaller than gw.. This change
has the property that it slowly moves the losing units into the region where thr ac:ual stimuli lie, at
which point they begin to capture some units and the ordinary dynamics of compcti'ic lcarning take
over.

The second method is similar to that employed by Bienenstock, Cooper, and Munro (1982). in
which a unit modulates its own sensitivity so that when it is not receiving enough inputs, it becomes
increasingly sensitive. When it is receiving too many inputs, it decreases its sensitivity. This mechan-
ism can be implemented in the present context by assuming that there is a threshold and that the
relevant activation is the degree to which the unit exceeds its threshold. If, whenever a unit fails to
win it decreases its threshold, and whenever it does win it increases its threshold, then this method will
also make all of the units eventually respond, thereby engaging the mechanism of competitive learning.
This second method can be understood in terms of the geometric analogy that the weight vectors have
a circle surrounding the end of the vector. The relevant measure is not the distance to the vector
itself, but the distance to the circle surrounding the vector. Every time a unit loses, it increases the
radius of the circle; every time it wins, it decreases the radius of the circle. Eventually, the circle on
the losing unit will be large enough to be closer to some stimulus pattern than the other units.

We have used both of these mechanisms in our experiments and they appear to result in essen-
tially similar behavior. The former, the leaky learning method, does not alter the formal analysis as

long as the ratio --- is sufficiently small. The varying threshold method is more difficult to analyze

and may, under some circumstances, distort the competitive learning process somewhat. After this
diversion, we can now return to our experiments on the development of word/position specific letter
detectors and other feature detectors.

Position specific letter detectors. In our first experiment, we presented letter pairs drawn from
the set: AA AB SA and 5. We began with clusters of size two. The results were unequivocal. The
system developed position-specific letter detectors. In some experimental runs, one of the units
responded whenever AA or AS was presented, and the other responded whenever BA or 0D was
presented. In this case, unit I represents an A detector in position I and unit 2 represents a B detector
for position I. Moreover, as in the word perception model, the letter detectors are, of course, in a
mutually inhibitory pool. On other experimental runs, the pattern was reversed. One of the units
responded whenev-r there was an A in the second position and the other unit responded whenever
there was a B in the second position. Figure 11 shows the final configuration of weights for one of our
experimental runs. Note that although the units illustrated here respond only to the letter in the first
position, there is still weight on the active lines in the second position. It is just that the weights on
the first position differentiate between A and B, whereas those on the second position respond equally
to the two letters. In particular, as suggested by our formal analysis, asymptotically the weights on a
given line are proportional to the probability that that line is active when the unit wins. That is,
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~Figure 11. The final configuration of weights for a system trained on the stimulus patterns A B C
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uij - P (unit, =1 unit, wins). Since the lower level units unique to A occur equzl!y as oftcr as
those unique to B, the weights on those lines are roughly equal. Tnc input lines cormrnon to the two
letters are on twice as often as those unique to either letter, and hence, they have twice as much
weight. Those lines that never come on reach zero weight.

Word detection units. In another experiment, we presented the same stir,._ -. patterns, but

increased the elements in the cluster from 2 to 4. In this case, each of the four !evci two ,inits came to
respond to one of the four input patterns--in short, the system developed word i -tecrors. Thus, it
layer two were to consist of a number of clusters of various sizes, large clusters witi '_-proximately one
unit per word pattern will develop into word detectors, while smaller clusters with apr.- mmately the
number of letters per spatial position, will develop into position-specific letter detectors. As we shall
see below, if the number of elements of a cluster is substantially less than the number of letters per

position, then the cluster will come to detect position-specific letter features.

Effects of number of elements per serial position. In another experiment, we vaned the
number of elements in a cluster and the number of letters per serial position. We presented stimulus
patterns drawn from the set AA AS AC AD BA BB BC BD. In this case, we found that with clusters
of size two, one unit responded to the patterns beginning with A and the other responded to those
beginning with B. In our previous experiment, when we had the same number of letters in each posi-
tion, we found that the clusters were indifferent as to which serial position they responded. Some
responded to position I and others to position 2. In this experiment, we found that a two-clement
cluster always becomes a letter detector specific to serial position in which two letters vary. Similarly,
in the case of clusters of size four we found that they always became letter detectors for the position
in which four letters varied. Thus, in this case one responded to an A in the second position, one
responded to a B in the second position, one responded to a C in the second position, and one
responded to a D in the second position. Clearly, there are two natural ways to cluster the stimulus
patterns-two levels of structure. If the patterns are to be put in two categories, then the binary
feature A or B in the first position is the relevant distinction. On the other hand, if the stimuli are to
be grouped into four groups, the four value feature determining the second letter is the relevant dis-
tinction. The competitive learning algorithm can discover either of the levels of structure--depending
on the number of elements in a cluster.

Letter similarity effects. In another experiment, we studied the effects of letter similarity to
look for units which detect letter features. We presented letter patterns consisting of a letter in the
first position only. We chose the patterns so they formed two natural clusters based on the similarity
of the letters to one another. We presented the letters A, B, 5, and E. The letters were chosen so that
they fell naturally into two classes. In our font, the letters A and E are quite similar and the letters B
and S are very similar. We used a cluster of size two. Naturally, one of the units responded to the A
or the E while the other unit responded to the B or the S The weights were largest on those features
of the stimulus pairs which were common among each of these similar pairs. Thus, the system
developed sub-letter size feature detectors for the features relevant to the discrimination.

Correlated teaching inputs. We carried out one other set of experiments with the word/letter
patterns. In this case, we used clusters of size two and presented stimuli drawn from the set AA BA
SB ED. Note that on the left hand side, we have the same four letters as we had in the previous exper-
iment, but on the right hand side we have only two patterns; these two patterns are correlated with the
letter in the first position. An A in the second position means that the first position contains either
an A or a B, whereas a B in the second position means that the first position contains either an S or an
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E. Note further that those correlations between the first and second positions ar in opposition to the
"naturar similarity of the letters in the first serial position. In this experiment, we first trained the sys-
tem on the four stimuli described above. Since the second serial position had only two letters in it,
the size two cluster became a position-specific letter detector for the second serial position. One unit
responded to the A and one to the E in the second position. Notice that the units are also responding
to the letters in the first serial position as well. One unit is responding to an A or a B in the first posi-
tion while the other responds to an I or an S. Figure 12 shows the patterns of weights developed by
the two units. After training, the system was then presented patterns containing only the first letter of
the pair and, as expected, the system had learned the 'unnatural' classification of the letters in the first
position. Here the strong correlation between the first and second position led the competitive learn-
ing mechanism to override the strong correlation between the highly similar stimulus patterns in the
first serial position. This suggests that even though the competitive learning item is an "unuper-
vised" learning mechanism, one can control what it learns by controlling the statistical structure of the
stimulus patterns being presented to it. In this sense, we can think of the right hand letter in this
experiment as being a kind of teacAiq stimulus aimed at determining the classification learned for other
aspects of the stimulus. It should also be noted that this teaching mechanism is essentially the same as
the so-called error-less learning procedure used by Terrace (1963) in training pigeons to peck a certain
color key by associating that color with a response situation where their pecking is determined by
other factors. As we shall see below, this correlational teaching mechaiasm is useful in allowing the
competitive learning mechanism to discover features which it otherwise would be unable to discover.

Horizontal and Vertical Lines

One of the classically difficult problems for a linear threshold device like a perceptron is to dis-
tinguish between horizontal and vertical lines. In general horizontal and vertical lines are not linearly
separable and require a multi-layer perceptron system to distinguish them. One of the goals of the
competitive learning device is for it to discover features which at a higher level of analysis might be
useful for discriminating patterns with a linear threshold type device which might not otherwise be
discriminable. It is therefore of some interest to see what kinds of features the competitive learning
mechanism discovers when presented with a set of vertical and horizontal lines. In the following dis-
cussion, we chronicle a series of experiments on this problem. Several of the experiments ended in
failure, but we were able to discover a way in which competitive learning systems can be put together
to build a hierarchical feature detection system capable of discriminating vertical and horizontal lines.
We proceed by sketching several of our failures as well as our successes because the way in which the
system fails is elucidating. It should be noted at the outset that our goal is not so much to present a
model of how the human learns to distinguish between vertical and horizontal lines (indeed, such a
distinction is probably pre-wired in the human system), but rather to show how competitive learning
can discover features which allow for the system to learn distinctions with multiple layers of units that
cannot be learned by single layered systems. Learning to distinguish vertical and horizontal lines is sim-
ply a paradigm case.

In this set of experiments, we represented the lower level of units as if they were on a 6X6 grid.
We then had a total of twelve stimulus patterns, each consisting of turning on six level one units in a
row on the grid. Figure 13 illustrates the grid and several of the stimulus patterns. Ideally, one might
hope that one of the units would respond whenever a vertical line is presented, the other would
respond whenever a horizontal line is presented. Unfortunately, a little thought indicates that thii is
impossible. Since every input unit participates in exactly one vertical and one horizontal line, there is
no configuration of weights which will distinguish vertical from horizontal. This is eactly why no



Rumelhart and Zipser 31 Competitive Learning

" 0 Unit 1
0 0000

00 "0 Unit 2.000 5.50

Unit 2

0 000* 0 000
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linear threshold device can distinguish between vertical and horizontal lines in one level. Since that
must fail, we might hope that some clusters in the competitive learning device will respond to vertical
lines by assigning weights as illustrated in Figure 14. In this case, one unit of the pair would respond
whenever the first, second, or fourth vertical line was presented, and another wou:ld respond whenever
the third, fifth, or sixth vertical line was presented; since both units would receive about the same

input in the face of a horizontal line, we might expect that sometimes one and sorntimes the other
would win the competition, but that the primary response would be to vertical lines. If other clusters
settled down similarly to horizontal lines, then a unit at the third level !ooking at thc output of the
various clusters could distinguish vertical and horizon'a,. Unfortunately, that is rot the pattern of
weights discovered by the competitive learning mechanism. Rather, a typical pattern of weights is illus-
trated in Figure 15. In this arrangement, each cluster responds to exactly three horizontal and three
vertical lines. Such a cluster has lost all information that might distinguish vertical from horizontal.
We have discovered a feature of absolutely no use in this distinction. In fact, such features systemati-
cally throw away the information relevant to horizontal vs. vertical. Some further thought indicates
why such a result occurred. Note, in particular, that two horizontal lines have exactly nothing in com-
mon. The grid that we show in the diagrams is merely for our convenience. As far as the units are
concerned there are 36 unordered input units; sometimes some of those units are active. Pattern simi-
larity is determined entirely by pattern overlap. Since horizontal lines don't intersect, they have no
units in common, thus they are not seen as similar at all. However, every horizontal line intersects
with every vertical line and thus has much more in common with vertical lines than with other hor-
izontal ones. It is this similarity that the competitive learning mechanism has discovered.

Now, suppose that we change the system somewhat. Suppose that we "teach" the system the
difference between vertical and horizontal (as we did in the previous experiments with letter strings).
In this experiment we used a 12X6 grid. On the right hand side of the grid we presented either a verti-
cal or a horizontal line, as we did before. On the left hand side of the grid we always presented the
uppermost horizontal line whenever any horizontal line was presented on the right hand grid, and we
always presented the vertical line furthest to the left on the left hand grid whenever we presented any
vertical line on the right hand side of the grid. We then had a cluster of two units receiving inputs
from all 12X6 = 72 lower level units. (Figure 16 shows several of the stimulus patterns.)

As expected, the two units soon learned to discriminate between vertical and horizontal lines.
One of the units responded whenever a vertical line was presented and the other responded whenever a
horizontal line was presented. They were responding, however, to the pattern on the left hand side
rather than to the vertical and horizontal pattern on the right. This too should be expected. Recall
that the value of the wij approaches a value which is proportional to the probability that input unit I
is active, given that unit j won the competition. Now, in the case of the unit that responds to vertical
line for example, every unit on the right hand grid occurs equally often so that all of the weights con-
necting to units in that grid have equal weights. The same is true for the unit responding to the hor-
izontal line. The weights on the right hand grid are identical for the two cluster members. Thus,
when the "teacher is turned off, and only the right hand figure is presented, the two units respond
randomly and show no evidence of having learned the horizontal/ vertical distinction.

Suppose, however, that we have four, rather than two, units in the level two clusters. We ran
this experiment and found that of the four units, two of them divided up the vertical patterns and two
of them divided up the horizontal patterns. Figure 17 illustrates the weight values for one of our runs.
One of the units took three of the vertical line patterns, another unit took three other vertical pat-
terns. A third unit responded to three of the horizontal line patterns and the last unit responded to
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the remaining three horizontal lines. Moreover, ater we took away the 'teaching' pattern, the system
continued to classify the vertical and horizontal lines just a it did when the left hand "teaching" pat-
tern was present.

In one final experiment with vertical and horizontal lines, we developed a three level system in
which we used the same stimulus patterns as in the previous experiment, the only difference was that
we had two clusters of four units at the second level and one cluster of two units at the third level.
Figure 18 shows the architecture employed. In this case, the the two four element clusters each learned
to respond to subsets of the vertical and horizontal lines a in the previous experiment. The two clus-
ters generally responded to different subsets, however. Thus, when the upper horizontal line was
presented, unit I of the first cluster responded and unit 3 of the second cluster responded. When the
bottom horizontal line was presented, unit I of the firt cluster responded again, but unit 4 of the
second cluster also responded. Thus, the cluster of size two at the highest level was receiving a kind of
dipole stimulus. It has four inputs and on any trial, two of them are active. As with our analysis of
dipole stimuli, we know that stimuli that overlap are always put in the same category. Note that when
a vertical line is presented, one of the two units in each of the middle layers of clusters that responds
to vertical lines will become active, and that none of the units which respond to horizontal lines will
ever be active; thus, this means that there are two units in each middle layer cluster which respond to
vertical lines. Whenever a vertical line is presented, one of the units in each cluster will become active.
None of the horizontal units will ever be active in the face of a vertical stimulus. Thus, one of the
units at the highest level learns to respond whenever a vertical line is presented and the other unit
responds whenever a horizontal line is presented. Once the system has been trained, this occurs
despite the absence of the 'teaching' stimulus. Thus, what we have shown is that the competitive learn-
ing mechanism can, under certain conditions, develop feature detectors which allow the system to dis-
tinguish among patterns which are not differentiable by a simple linear unit in one level.

Concluslo

We have shown how a very simple competitive mechanism can discover a set of feature detectors
which capture important aspects of the set of stimulus input patterns. We have also shown how these
feature detectors can form the basis of a multi-layer system that can serve to learn categorizations of
stimulus sets which are not linearly separable. We have shown how the use of correlated stimuli can
serve as a kind of 'teaching' input to the system to allow the development of feature detectors which
would not develop otherwise. Although we find the competitive learning mechanism a very interesting
and powerful learning principle, we do not, of course, imaine that it is the only learning principle.
Competitive learning is an essentially non-associative statistical learning scheme. We certainly imagine
that other kinds of learning mechanisms will be involved in the building of amociations among patterns
of activation in a more complete neural network. We offer this analysis of these competitive learning
uicchanisms to further our understanding of how simple adaptive networks can discover features
important in the description of the stimulus environment in which the system finds itself.
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Figure 18. The architecture for the three level horizontal/venical discrimination experiment.
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Appendix

For the case of homogeneous dipole stimulus patterns, it is possible to derive an expresion for
the most stable equilibrium state of the system. We say that a set of dipole stimulus patterns is homo-
geneous if (1) they are equally likely and (2) for every input pattern in the set there are a fixed number
of other input patterns which overlap them. These conditions were met in our simulations. Our meaw-
ure of stability is given by T = Ip* ZV (j - cz,).

T t j (dk Ak

1 & i
Since -j -. we can write

T -VZZZ'i.-, - 7jk CV z-.Nlit li
Summing the first portion of the equation over I and the second over j we have

1
T "M % Vjk(11jA -II - ' Z al Vjk.

2,rkj vij

Now note that when Pk - , we have ati- . ViL Furthermore, Yv and

I

v - N1, where Nj is the number of patterns captured by unit I. Thus, we have

T - - 1YVj~j
N j ki v k N

Now. since all stimuli are the same size, we have rij - rjj. Moreover, since all stimuli have the same
number of neighbors, we have ri - Yri - R, where R is a constant determined by the dimen-

Ij
sionality of the stimulus space from which the dipole stimuli are d awn. Thus, we have

T -- i

j k
and we have

T Y.Y N vjtt1j - RM
j N

Since R, M, and N arc constants, we have that T is maimum whenever T' -- . VJtejk is max-
jt

imum. Now substituting for oijk, we can write

T' j -I- r t I

We can now substitute for the product Vjk V11 the term j k - vjk (1 -vii ). We then can write

T - %7,rkvitJ - Y. t k.,F (1 ,}.Vj)
j t i j Ni tki

Summing the first term of the equation first over I, then over k, and then over J, gives usI
T' -MR - 1 11-- kAt' ,(I-,

i ,j k I
Now, recall that rki is given by the degree of stimulus overlap between stimulus I and stimulus k. In
the case of dipoles there are only three possible values of rki.
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r0 no overlap
rku  I k =1

1/2 otherwise

Now, the second term of the equation for TP is 0 if either rk, = 0 or if vjk(1-vjl) = 0. Since v 15

is either 1 or 0, this will be zero whenever j'l. Thus, for all non-zero cases in the second term we
1

have rk5  . Thus we have

T I MR 1 A( -vj

Finally, note that 5;vjk(1-vj,) is 1 and rk, is in each cae in which different units capture
j I

neighboring patterns. We refer to this a a cae of bad neighbors and let Bj designate the number of

bad neighbors for unit J. Thus, we have
T'" .' N "

Finally, we can see that T' will be a mazdmum whenever T" - is miaimum. TIus, minimizing

J ,j
T" leads to the maximally stable solution in this cue.
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ing usercomputer-uer interaction; Smolensky, P., Monty, M.L., & Conway, E., For-
malizing task descriptions for command specification and documentation; Bannon, LJ.,
& O'Malley, C., Problems in evaluation of human-computer interfaces: A case study-,
Riley, M., & O'Malley, C., Planning nets: A framework for analyzing user-computer
interactions; all published in B. Shackel (Ed.), INTERACT '#4, First Coference on



HumarCompwer Iteractio, Amsterdam: North-Holland, 1984; Norman, D.A., & Draper,
S.W., Software engineering for user interfaces, Proceedings of the Seventh Interaionai
Conference an Software Engineering. Orlando, FL, 1984.

84U. Steven L. Greenspan. Reference Comprehesion: A Topic-Comment Analysis of Sentence-
Pictwe Verification. April 1984.

8404. Paul Smolensky and Mary S. Riley. Harmony Theary: Problem Solving. Parallel Cognitive
Models, and Thermal Physics. April 1984. The first two papers will appear in Proceedings
of the S ik Annual Meeting of the Cognitive Science Society, Boulder, CO.

8405. David Zipser. A Computationa Model of Hippocampw Plaee-Fields. April 1984.

8406. Michael C. Mozer. Inductive Informmlon Retrieval Using Parallel Distributed Computation.
May 1984.

8407. David E. Rumelhart and David Zipser. Feaure Discovery by Competitive Learning. July
1984. To appear in Cognitive Science.
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